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Preface v

PREFACE

These notes started as a set of handouts to the students while teaching a course on introductory
numerical analysis in the fall of 2003 at Brooklyn College of the City University of New York. The
notes rely on my experience of going back over 25 years of teaching this course. Many of the methods
are illustrated by complete C programs, including instructions how to compile these programs in a
Linux environment. These programs can be found at

http://www.sci.brooklyn.cuny.edu/ mate/nml_progs/numanal_progs.tar.gz

They do run, but many of them are works in progress, and may need improvements. While the
programs are original, they benefited from studying computer implementations of numerical methods
in various sources, such as [AH|, [CB], and [PTVF]. In particular, we heavily relied on the array-
handling techniques in C described, and placed in the public domain, by [PTVF]. In many cases,
there are only a limited number of ways certain numerical methods can be efliciently programmed;
nevertheless, we believe we did not violate anybody’s copyright (such belief is also expressed in
[PTVF, p. xvi] by the authors about their work).

New York, New York, July 2004
Last Revised: August 25, 2014

Attila Maté
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1. Floating point numbers 1

1. FLOATING POINT NUMBERS

A floating point mumber in binary arithmetic is a number of form 2¢ - 0.m, where ¢ and m are
integers written in binary (that is, base 2) notation, and the dot in 0.m is the binary “decimal” point,
that is, if the digits of m are my, my, ..., mg (m; = 0or 1), then Om = my -2~ +my-2724. . my-27F,
Here ¢ is called the exponent and m is called the mantissa. In the standard form of a floating point
number it is assumed that m; = 1 unless all digits of m are 0; a nonzero number in nonstandard
form can usually be brought into standard form by lowering the exponent and shifting the mantissa
(the only time this cannot be done is when this would bring the exponent e below its lower limit —
see next). In the IEEE standard,! the mantissa m of a (single precision) floating point is 23 bits. For
the exponent e, we have —126 < ¢ < 127. To store the exponent, 8 bits are needed. One more bit
is needed to store the sign, so altogether 40 bits are needed to store a single precision floating point
number. Thus a single precision floating point number roughly corresponds to a decimal number
having seven significant digits. Many programming langnages define double precision numbers and
even long double precision numbers.

As a general rule, when an arithmetic operation is performed the number of significant digits is
the same as those in the operands (assuming that both operands have the same number of significant
digits). An important exception to this rule is when two numbers of about the same magnitude are
subtracted. For example, if

r = 7235523 and y = .7235291,

both having seven significant digits, then the difference

o —y = 0000232
has only three significant digits. This phenomenon is called loss of precision. Whenever possible,
one must avoid this kind of loss of precision.

When evaluating an algebraic expression, this is often possible by rewriting the expression. For

example, when solving the quadratic equation

22 —300r+1 =0,

the quadratic formula gives two solutions:

300 — /89996
r= ——.

300 + /89996
=
2 2

There is no problem with calculating the first root, but with the second root there is clearly a loss of
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Problems

1. Calculate © — /o2 —1 for £ = 256,000 with 10 significant digit accuracy. Avoid loss of
significant digits.

Solution. We cannot use the expression given directly, since x and /a2 — 1 are too close, and their
subtraction will result in a loss of precision. To avoid this, note that

I_\/r:(j_ I2_1)_1«#\/1’271: 1

eVl =1 a1
To do the numerical calculation, it is easiest to first write that = = y - 105, where y = 2.56. Then

1 1
T+ V12— 1 _y+\/g,12710_1°

1072 a2 1.953,125,000,0 - 1075,

2. Calculate v/x2 + 1 — x for = 1,000,000 with 6 significant digit accuracy. Avoid the loss of
significant digits.

Solution. We cannot use the expression given directly, since v/a2 + 1 and z are too close, and their
subtraction will result in a loss of precision. To avoid this, note that

/72 .
\/12+17;ﬂ:(\/£2+ 7:5)- r +1+l‘: !

Vit l+a Ve + 14
To do the numerical calculation, it is easiest to first write that = = y - 108, where y = 1. Then

! = ! -107% = 5.000, 000,000 - 1077,

Vi+l+az 2 +10724y

3. Show how to avoid the loss of significance when solving the equation

2 — 1000z — 1 =0.

0.0002

4. Evaluate €

— 1 on your caleulator. Hint: The best way to avoid the loss of precision is to
e 4o T .
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(Note that angles are measured in radians.) Hint: Rather than evaluating the sines of the angles
given, it may be better to use the formula

r+y T—y

2

with = = 0.245735 and y = 0.245712. Then sine of a small angle may be more precisely evaluated
using a Taylor series than using the sine function on your calculator. Note, however, that this
approach does not avoid the loss of precision that results from calculating = —y. From what is given,
this cannot be avoided.

sin

sinz —siny = 2cos

6. Find 1 — cos 0.008 with 10 decimal accuracy.

Solution. Of course 0.008 means radians here. Using the value of cos0.008 here would lead to
unacceptable loss of precision, since to value is too close to 1. Using the Taylor series of cosz gives
a more accurate result:

o -2n -2 4 -6
I T T
m“*nzﬂ( R 7 Rt I TR TR

For |x| < 1 this is an alternating series, and so, when summing finitely many terms of the series, the
absolute value of the error error will be less than that of the first omitted term. With = = 0.008, we
have . .
x 0.01 9 1 _12 15
— < —— =10 s < 10 -.00139 < 1.39 - 10
o < 720 720 © = ’

and so this term can safely be omitted. Thus, writing z = 8- 10~3, with sufficient precision we have

512
1—cosemea?/2l — ot /4l =32.107¢ — QT 10712 22 0.0000319998203

7. Find 1 — ¢ 099003 with 10 decimal digit accuracy.

Solution. Using the value of ¢ 99093 would lead to an unnecessary and unacceptable loss of
accuracy. It is much better to use the Taylor series of e with x = —3-10~°%:
x  n 2 3
T T T
1—e"=1- T e
Z n! T3 6
n=0
For . = —3-10~% this becomes an alternating series:
9.-10710  27.10"1°
3.107% — ——— -

2 6



When summing finitely many terms of an alternating series, the error will be smaller than the first
omitted term. Since we allow an error no larger than 5 - 10~ the third term here can be safely
omitted. Thus,

9.10-10
1— 000003 o5 3. 1075 — —y = .000, 029, 999, 55.

8. Calculate



